Rapid and Efficient in planta Genome Editing in Sorghum Using Foxtail Mosaic Virus-mediated sgRNA Delivery
Themes: Feedstock Production
Keywords: Genome Engineering, Genomics
Citation
Baysal, C., Kausch, A.P., Cody, J.P., Altpeter, F., Voytas, D.F. Dec. 11, 2024. “Rapid and Efficient in planta Genome Editing in Sorghum Using Foxtail Mosaic Virus-mediated sgRNA Delivery.” The Plant Journal. DOI: 10.1111/tpj.17196.
Overview

The requirement of in vitro tissue culture for the delivery of gene editing reagents limits the application of gene editing to commercially relevant varieties of many crop species. To overcome this bottleneck, plant RNA viruses have been deployed as versatile tools for in planta delivery of recombinant RNA. Viral delivery of single-guide RNAs (sgRNAs) to transgenic plants that stably express CRISPR-associated (Cas) endonuclease has been successfully used for targeted mutagenesis in several dicotyledonous and few monocotyledonous plants. Progress with this approach in monocotyledonous plants is limited so far by the availability of effective viral vectors. We engineered a set of foxtail mosaic virus (FoMV) and barley stripe mosaic virus (BSMV) vectors to deliver the fluorescent protein AmCyan to track viral infection and movement in Sorghum bicolor. We further used these viruses to deliver and express sgRNAs to Cas9 and Green Fluorescent Protein (GFP) expressing transgenic sorghum lines, targeting Phytoene desaturase (PDS), Magnesium-chelatase subunit I (MgCh), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase, orthologs of maize Lemon white1 (Lw1) or GFP. The recombinant BSMV did neither infect sorghum nor deliver or express AmCyan and sgRNAs. In contrast, the recombinant FoMV systemically spread throughout sorghum plants and induced somatic mutations with frequencies reaching up to 60%. This mutagenesis led to visible phenotypic changes, demonstrating the potential of FoMV for in planta gene editing and functional genomics studies in sorghum.
Data
Download (2.6 KB) includes:
- Somatic mutations
- Oligos