Conversion of High-Solids Hydrothermally Pretreated Bioenergy Sorghum to Lipids and Ethanol Using Yeast Cultures
Themes: Conversion
Keywords: Feedstock Bioprocessing
Citation
Cheng, M.H., Dien, B.S., Jin, Y.S., Thompson, S., Shin, J., Watson Slininger, P.J., Qureshi, N., Singh, V. June 14, 2021. “Conversion of High-Solids Hydrothermally Pretreated Bioenergy Sorghum to Lipids and Ethanol Using Yeast Cultures.” ACS Sustainable Chemistry and Engineering. DOI: 10.1021/acssuschemeng.1c01629.
Overview
Glucose and xylose are the major sugars present in cellulosic hydrolysates. The cellulosic sugars can be used for the production of platform chemicals. In this study, productions of lipid and ethanol by yeasts were compared for concentrated bioenergy sorghum syrup. Bioenergy sorghum was hydrothermally pretreated at 50% w/w solids in a continuous industrial reactor and sequentially mechanically refined using a burr mill to improve biomass accessibility for hydrolysis. Fed-batch enzymatic hydrolysis was conducted with 50% w/v solids loading and cellulase cocktail (50 FPU/g biomass) to achieve 230 g/L sugar concentration. Various strains of Rhodosporidium toruloides were evaluated for converting sugars into lipids, and strain Y-6987 had the highest lipid titer (9.2 g/L). The lipid titer was improved to 19.0 g/L by implementing a two-stage culture scheme, where the first stage was optimized for yeast growth and the second for lipid production. For ethanol production, the engineered Saccharomyces cerevisiae SR8ΔADH6 was used to coferment glucose and xylose. Ethanol fermentation was optimized for media nutrients (YP, YNB/urea, and urea), cellulosic sugar concentration, and sulfite conditioning to maximize the ethanol concentration from sorghum syrups. Fermentation of 70% v/v concentrated hydrolysate conditioned with sulfite produces 50.1 g/L ethanol from 141 g/L of sugars.
Data
Download (15 KB) includes:
- Fermentation Profiles
- Sugar and Lipid Profiles
- Yeast Cell Biomass Yields