

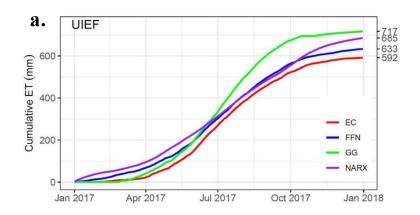
Artificial Neural Networks Estimate Evapotranspiration for *Miscanthus x* giganteus as Effectively as Empirical Model but with Fewer Inputs

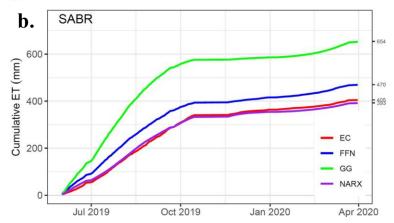
Background/Objective

Estimations of actual evapotranspiration (ET) are crucial for understanding how vegetation impacts the water balance of ecosystems. ET estimation via empirical modeling involves many parameters and is very complex. This study explores whether artificial neural networks (ANNs), which require fewer and more common meteorological parameters, can estimate ET as well as empirical models.

Approach

Researchers trained two ANNs, one using a feed-forward approach (FFN) and the other a nonlinear autoregressive network (NARX), to predict *ET* and compared them to the commonly used empirical model Grainger and Gray (GG). Models were trained on a 9-year eddy covariance dataset for *Miscanthus x giganteus* (*Mxg*) for Illinois (UIEF) and tested using out-of-sample data from UIEF and a separate location in Iowa (SABR).


Results


Model	Inputs	R ² (UIEF)	R ² (SABR)	Findings
FFN	$T_a + R_s$	0.84	0.70	Best accuracy, simple input
NARX	T_a	0.70	0.70	Most generalizable
GG	T_a, R_h, R_s, u, G	0.83	0.60	Poor generalization, more inputs

T_a: air temperature, R_s: solar radiation, R_h: relative humidity, u: average daily wind speed, G: soil heat flux

Significance/Impacts

This analysis demonstrates that ANN approaches are as accurate as empirical approaches for estimating *ET* but require fewer inputs.

Cumulative *ET* models: NARX, GG, and FFN compared to observed *ET* from eddy covariance (EC) for (a) the UIEF during 2017 and (b) the SABR site from June 2019 to April 2020.

Aslan-Sungur et al. 2025. "Artificial Neural Networks Estimate Evapotranspiration for Miscanthus x giganteus as Effectively as Empirical Model but with Fewer Inputs." Theoretical and Applied Climatology. DOI: 10.1007/s00704-025-05812-5.