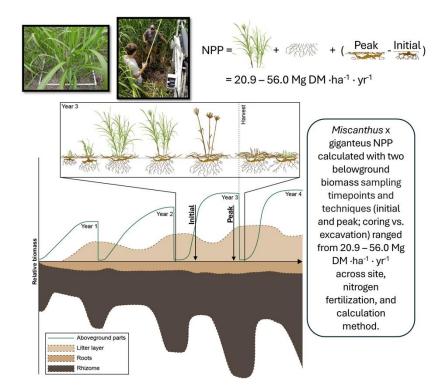


Aboveground Rather Than Belowground Productivity Drives Variability in *Miscanthus* × *giganteus* Net Primary Productivity

Background/Objective


Quantifying the carbon (C) uptake of the perennial grass, $Miscanthus \times giganteus$ ($M \times g$), in both aboveground and belowground structures (e.g., net primary productivity (NPP)) and differences among methodological approaches is crucial. Many estimates of $M \times g$ productivity focus on aboveground harvestable yields and do not directly address belowground biomass in this perennial crop. Our objectives in this study were to directly measure $M \times g$ NPP and to evaluate the effect of nitrogen fertilization, location, and method of rhizome biomass collection.

Approach

To more accurately constrain the amount of carbon taken up by $M \times g$ in both aboveground and belowground plant parts, we calculated the NPP of mature $M \times g$ at three sites with three nitrogen application rates using collections of aboveground and belowground biomass at two time points during the growing season.

Results

We found that aboveground $M \times g$ NPP ranged from 15.4 Mg DM ha⁻¹ year⁻¹ to 36.4 Mg DM ha⁻¹ year⁻¹ and belowground $M \times g$ NPP ranged from 4.4 Mg DM ha⁻¹ year⁻¹ to 19.6 Mg DM ha⁻¹ year⁻¹. $M \times g$ NPP varied across sites, fertilization, and calculation assumptions. Aboveground NPP (yield) was on average 68.7% of the total NPP. Root-to-shoot ratios at peak biomass decreased with nitrogen application rate, from an average of 1.9 for 0 N plots to 0.89 for 224 N fertilized plots.

Growth and partitioning of NPP in $M \times g$ using approximations of relative biomass pools and their accumulation.

Significance/Impacts

Overall, these results show that the range of mature $M \times g$ NPP is driven by aboveground productivity, influenced by nitrogen application and site. Our results provide useful data to constrain agro-ecosystem models and provide crucial insights for future perennial belowground sampling. These estimates help improve our understanding of $M \times g$ carbon sequestration potential and will improve the representation of $M \times g$ in agro-ecosystem models.

Hartman, et al. 2025. "Aboveground Rather Than Belowground Productivity Drives Variability in Miscanthus x giganteus Net Prinary Productivity." GCB Bioenergy. DOI: 10.1111/gcbb.70072.