

<u>Carbon-Negative Hydrogen: Aqueous Phase Reforming (APR)</u> of Glycerol over NiPt Bimetallic Catalyst Coupled with CO₂ Sequestration

Background/Objective

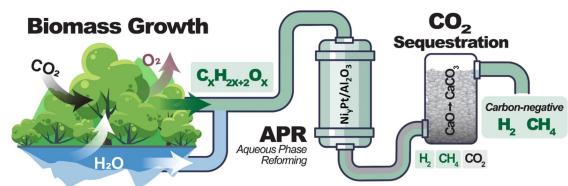
Hydrogen (H₂) is an important chemical in refining processes, ammonia production, energy storage, and as an alternative and cleaner fuel. Biomass captures CO₂

from the atmosphere during the process of photosynthesis. Using biomass to produce H_2 offers the advantage of producing H_2 from a low-carbon source. Combining H_2 production from biomass with carbon capture and storage during H_2 production has the potential to produce carbon-negative H_2 . Herein we report the production of high-pressure, carbon-negative H_2 from glycerol.

Approach

Aqueous phase reforming (APR) of 10 wt% glycerol solution was studied with a series of Nickel Platinum (NiPt) alumina bi-metallic catalysts supported on alumina. The adsorption capacity of the CaO adsorbent was measured at different temperatures.

Results


The Ni₈Pt₁-450 catalyst had the highest hydrogen selectivity (95.6%) and the lowest alkanes selectivity (3.7%) of the tested catalysts. The hydrogen selectivity decreased in the order of Ni₈Pt₁-450 > Ni₈Pt₁-260 > Ni₁Pt₁-260 > Pt-260. Life cycle analysis showed that the APR of glycerol coupled with CO₂ capture has net negative CO₂ equivalent greenhouse gas emissions of $-9.9 \text{ kg CO}_2 \text{ eq./kg H}_2$ and $-50.1 \text{ kg CO}_2 \text{ eq./kg H}_2$ when grid electricity and renewable electricity are used, respectively, and the CO₂ is allocated respectively to the mass of products produced. The cost of this H₂ was estimated to be 2.4 USD per kg H₂ when grid electricity is used and 2.7 USD per kg H₂ when using renewable electricity. The cost of glycerol has the highest contribution of 1.71 USD per kg H₂.

Significance/Impacts

This study shows that combining H₂ production from biomass with carbon capture and storage during H₂ production has the potential to produce carbon-negative H₂.

Santiago-Martinez et al. 2024. "Carbon-Negative Hydrogen: Aqueous Phase Reforming (APR) of Glycerol over NiPt Bimetallic Catalyst Coupled with CO₂ Sequestration." Green Chemistry. DOI: 10.1039/D4GC01896F.

Schematic representation of a process to produce carbon-negative H_2 from biomass-derived compounds through APR technology and CO_2 sequestration.

Biological and Environmental Research