

Similar Photosynthetic but Different Yield Responses of C₃ and C₄ Crops to Elevated O₃

Background/Objective

Current ground-level ozone (O_3) pollution significantly reduces global crop productivity. Understanding how different crops respond to elevated O_3 concentration ($[O_3]$) is critical to improve crop production and resilience under atmospheric change. The objectives of this study were to 1) examine the extent of leaf trait variation in C_3 and C_4 crops, 2) analyze how elevated $[O_3]$ affects crop performance in C_3 and C_4 crops, and 3) explore whether inbred and hybrid lines of rice and maize exhibit a similar O_3 response.

Approach

We compiled 46 journal articles and unpublished datasets that reported leaf photosynthetic and biochemical traits, plant biomass, and yield in five C_3 crops (chickpea, rice, snap bean, soybean, and wheat) and four C_4 crops (sorghum, maize, *Miscanthus* × *giganteus*, and switchgrass) grown under ambient and elevated O_3 concentration ([O_3]) in the field at free-air O_3 concentration enrichment (O_3 -FACE) facilities over the past 20 years.

Results

When normalized by O_3 exposure, C_3 and C_4 crops showed a similar response of leaf photosynthesis, but the reduction in chlorophyll content, fluorescence, and yield was greater in C_3 crops compared with C_4 crops. Additionally, inbred and hybrid lines of rice and maize showed different sensitivities to O_3 exposure.

Significance/Impacts

We quantitatively show that C_3 crops are more sensitive to elevated $[O_3]$ than C_4 crops. Our results provide key insights into O_3 response in crops with different photosynthetic pathways. This understanding could help maintain cropland productivity in an increasingly polluted atmosphere. C_4 crops, in particular bioenergy feedstocks, could provide sustainable biomass yields and energy in high O_3 -polluted regions.

-(3, 1)Snap bean (22, 8)(23, 7)Wheat (137, 12)Soybean (2, 2)Chickpea | Maize (91, 6)(18, 2) Miscanthus Sorghum (15, 2)Switchgrass (4, 2)C₃ All $\Delta_{\text{yield / biomass}}$ (% ppm⁻¹ h⁻¹)

Quantitative comparison of crop yield or biomass responses to elevated $[O_3]$ enrichment in C_3 and C_4 crops.

Li et. al, 2023. "Similar Photosynthetic but Different Yield Responses of C₃ and C₄ crops to elevated O₃." Proceedings of the National Academy of Sciences. DOI: 10.1073/pnas.2313591120.