

<u>Immediate Impacts of Soybean Cover Crop on Bacterial Community</u> Composition and Diversity in Soil under Long-Term Saccharum Monoculture

Background/Objective

Long-term monoculture results to soil degradation and changes in cropping management, such as cover crops, can improve soil health and productivity. Sugarcane, a high biomass crop important for sugar and bioenergy production, is extensively cultivated as a monoculture. In this study, we determined whether introduction of soybean cover crop in a soil subjected to long-term sugarcane monoculture will induce diversity and compositional differences on rhizospheric microbial communities.

Approach

The experimental plots were established at the USDA-ARS Sugarcane Research Unit Ardoyne Farm in Schriever, LA. Near full length (~1,400 base pairs) of 16S rRNA gene sequences were extracted from the rhizospheres of sugarcane, and soybean and fallowed soil were compared.

Results

Higher soil bacterial diversity was observed in the soybean cover crop than sugarcane monoculture across all measured indices. Non-metric multidimensional scaling analysis showed distinct groupings of bacterial operational taxonomic units according to management system, indicating compositional differences among treatments.

Significance/Impacts

This study indicates cover crops could have a restorative effect and potentially promote sustainability in long-term *Saccharum* production systems, as well as offset yield decline. Although this study included only three cropping systems in a single crop year, results illustrate that the use of cover crops increases bacterial diversity and impacts community composition. Thus, incorporation of leguminous plants as cover crops is a viable management strategy that will likely improve the sustainability of sugarcane production systems and can be predicted for energycane.

Mula-Michel et al. 2023. "Immediate Impacts of Soybean Cover Crop on Bacterial Community Composition and Diversity in Soil under Long-Term Saccharum Monoculture." PeerJ. DOI: 10.7717/peerj.15754.

Relative abundances of bacterial phylotypes sequenced from DNA from soybean and sugarcane rhizospheres, and fallowed soil.

