<u>BRC Science Highlight</u> April 2019

Elevated Ozone Concentration Reduces Photosynthetic Carbon Gain but Does Not Alter Leaf Structural Traits, Nutrient Composition or Biomass in Switchgrass

Background/objective

Elevated tropospheric ozone (O_3) concentration threatens the stability of crop production and negatively influences the growth, development, production and yield of C_3 plants. However, less is known about the impacts of elevated O_3 on photosynthesis and performance of C_4 species. The effects of elevated O_3 on leaf photosynthesis, nutrient composition and structural traits were studied in switchgrass, a promising C_4 bioenergy crop.

Approach

- Using Free Air Concentration Enrichment (FACE) technology, the impacts of elevated O₃ on leaf gas exchange, leaf structural traits, and growth of switchgrass were studied.
- Three plots (20 m dia) were exposed to ambient O₃ concentration (30-50 nmol mol⁻¹), and three plots were fumigated with elevated O₃ (~100 nmol mol⁻¹).

Results

- Elevated O₃ concentration reduced net CO₂ assimilation rate (A), stomatal conductance (g_s), and maximum CO₂ saturated photosynthetic capacity (V_{max}).
- Other functional and structural traits in switchgrass and the macro- and micronutrient content of leaves (except potassium) were not affected

Significance

- The study provides evidence that switchgrass exhibits a greater O₃ tolerance than maize, and suggests that C₄ bioenergy crops differ in O₃ tolerance.
- Understanding variation in C₄ bioenergy feedstock responses to elevated O₃ could be used to better place specific feedstocks on a dynamic landscape.

Li, S., Courbet, G., Ourry, A., Ainsworth, E.A. (2019). "Elevated Ozone Concentration Reduces Photosynthetic Carbon Gain but Does Not Alter Leaf Structural Traits, Nutrient Composition or Biomass in Switchgrass". Plants. DOI: 10.3390/plants8040085

Average values of: net CO₂ assimilation rate (A) (a); stomatal conductance (g_s) (b); intercellular CO₂ concentration (C_i) (c); and instantaneous water use efficiency (iWUE) (d) of switchgrass grown at ambient or elevated O₂ concentrations

Relationship between stomatal conductance (g_s) and AH_s/C_s for switchgrass grown under ambient and elevated O_3 concentrations

