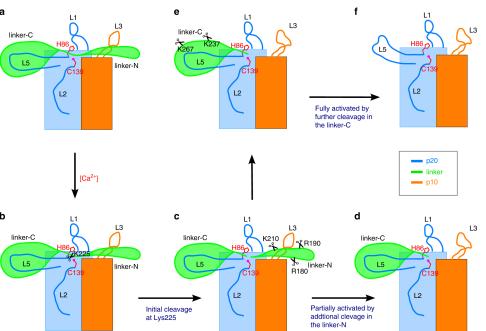
BRC Science Highlight Structural Basis for Ca²⁺-Dependent Activation of a Plant Metacaspase May 2020

Background/objective

Plant metacaspases mediate programmed cell death in development, biotic and abiotic stresses, damage-induced immune response, and resistance to pathogen attack. Most metacaspases require Ca²⁺ for their activation and substrate processing, but, the Ca²⁺-dependent activation mechanism remains elusive. Damage-induced intracellular Ca²⁺ flux activates Metacaspase 4 (*At*MC4), which modulates plant immune defense. This study determined crystal structures for *At*MC4 and characterized its Ca²⁺-dependent activation, laying the basis for future engineering for stress response to enable biodesign of more sustainable crops.

Approach

- Structure determination of inactive and Ca²⁺-activated AtMC4 structures by the QPSI and NSLS-II CBMS teams
- In vivo activity analyzed through tobacco (Nicotiana benthamiana) plants that were infiltrated with different gene combinations of amplified AtMC4 and its mutants, and GST-Propep1 protein by the CABBI team


Results

- Determined crystal structures for AtMC4 and characterized its Ca²⁺-dependent activation and cleavage of substrate Propep1 from Arabidopsis
- ✤ Identified a linker domain that blocks the metacaspase activation
- Multiple cleavages in the linker domain induce conformational changes and processing of substrate Propep1 upon activation by Ca²⁺

Significance

- Metacaspases may function as a Ca²⁺-signature decoder to transduce Ca²⁺ signals to activate distinct response pathways.
- This lays the foundation for tuning AtMC4 activity in response to abiotic and biotic stresses for engineering of more sustainable crops for biofuels.

Zhu, P., et al. 2020. "Structural basis for Ca2+-dependent activation of a plant metacaspase". *Nature Communications.* 11:2249. *DOI:* 10.1038/s41467-020-15830-8

Proposed mechanism of Ca2+-dependent AtMC4 activation a. Inactive form b., c. Initial cleavage at Lys225 d. Additional cleavage in the linker-N for partial activation e. Further cleavage in the linker-C for full activation f. Fully activated form.

