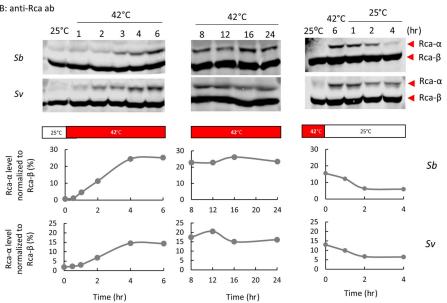
<u>BRC Science Highlight</u> November 2020

A Role for Differential Rubisco activase Isoform Expression in C4 Bioenergy Grasses at High Temperature

Background/objective

Rubisco activase (Rca) facilitates the removal of inhibitory sugar-phosphates to allow Rubisco activation during CO_2 fixation. Most plant species express two Rca isoforms, the larger Rca- α and the shorter Rca- β . While the mechanism of Rubisco activation by Rca isoforms has been intensively studied in C_3 plants, the functional role of Rca in C_4 plants, where Rubisco and Rca are located in a much higher [CO₂] compartment, is less clear. This study selected four C_4 bioenergy grasses and the model C_4 grass setaria (*Setaria viridis*) to investigate the role of Rca in C_4 photosynthesis.

Approach


- Gene structures and motifs in the promoters of Rca genes were analyzed in four C₄ bioenergy grasses (sorghum [Sorghum bicolor], maize, sugarcane [Saccharum officinarum], and miscanthus [Miscanthus sinensis]) and the model C4 grass setaria (Setaria viridis).
- Rca isoform expression was analyzed in each of the grasses under various stress conditions (drought, salt, heat, and cold).

Results

- Set regulatory regions of Rca-α proteins are largely conserved in the five C₄ grasses.
- At ambient growth temperature (~25°C), only Rca-β isoforms were expressed, whereas high temperature (~42°C) induced gradual Rca-α isoform accumulation, which again decreased when temperature returned to the growth temperature.
- The Rca-α induction profile was similar to the recovery profile of both CO₂ assimilation and Rubisco activation after a shift from ambient to high temperature.

Significance

Future work using transgenic plants will further explore how Rca-α might play a central role in sustaining photosynthesis in C₄ grasses at high temperature by modulating either Rubisco activation activity and/or Rca stability.

Immunoblot analysis of the effect of temperature transitions on abundance of Rca isoforms in sorghum and setaria leaves.

