
BRC Science Highlight

Improved Genomic Reference Database for Microbes in Soils

March 2019

Background/objective

Our ability to characterize soil microbiomes relies on having a high-quality reference to compare what we observe to previously characterized microbes. This publication expands a genome reference database that was curated to describe bacteria that were previously isolated from soil environments. Specifically, we describe soil-associated plasmids that can transfer genes, like those associated with nitrogen fixation, from varying host bacteria.

Summary of RefSoil plasmids: (A) Percentages of RefSoil microorganisms with (blue) and without (green) detected plasmids. (B) Distribution of the number of plasmids per RefSoil microorganism.

Approach

Plasmid genes associated with soil bacterial genomes were characterized by their sizes, gene content, and distribution in various types of soils.

Results

- Many of the organisms in the soil contain plasmids (see figure).
- Soil plasmids are generally larger than other described plasmids.
- We observed a weak relationship between chromosome size and plasmid size, and no relationship between chromosome size and plasmid number, suggesting that genomic traits are independent in soil.

Significance

We provide a specialized resource for soil microbiome studies so that functional content, host associations, and dynamics between soil microbes can be better understood.

