<u>BRC Science Highlight</u> February 2022

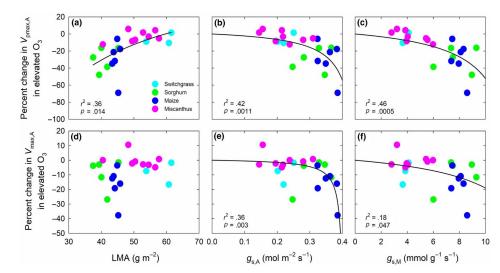
Testing Unified Theories for Ozone Response in C₄ Species

Background/objective

Tropospheric ozone (O_3) is a damaging air pollutant that has long been known to negatively impact leaf photosynthetic carbon assimilation, stomatal conductance, growth and development in C_3 plants. While interspecific variability in O_3 sensitivity among C_3 species is well known, variation among C_4 species has been less clearly documented. Leaf traits that determine variation in sensitivity to O_3 across C_4 species has also not been tested. In this study, a side-by-side experimental design was used to test for (a) the effects of elevated O_3 on leaf morphological, structural, chemical and physiological traits, (b) genotypic and species variation in O_3 sensitivity, and (c) relationships between O_3 sensitivity and LMA and between O_3 sensitivity and stomatal conductance in C_4 bioenergy grasses.

Approach

We investigated leaf morphological, chemical, and photosynthetic responses of 22 genotypes of four C₄ bioenergy species (switchgrass, sorghum, maize, and miscanthus) to elevated O₃ in side-by-side field experiments using free-air O₃ concentration enrichment (FACE).


Results

- Elevated O₃ did not alter leaf morphology, nutrient content, stomatal conductance, chlorophyll fluorescence, and respiration in most genotypes but reduced net CO₂ assimilation in maize and photosynthetic capacity in sorghum and maize.
- The responses of both area- and mass-based leaf photosynthetic rate and capacity to elevated O₃ were not affected by LMA directly but negatively influenced by LMA indirectly through stomatal conductance.

Significance

- These results demonstrate significant variation in O₃ sensitivity among C₄ species, with maize and sorghum showing greater sensitivity of photosynthesis to O₃ than switchgrass and miscanthus.
- To our knowledge, this is the first study to provide a test of unifying theories explaining variation in O₃ sensitivity in C₄ bioenergy grasses. These findings advance the understanding of O₃ tolerance in C₄ grasses and could aid in optimal placement of diverse C₄ bioenergy feedstocks across a polluted landscape.

Li, S., et al. Jan. 28, 2022. "Testing Unified Theories for Ozone Response in C₄ Species." Global Change Biology. DOI: https://doi.org/10.1111/gcb.16108.

The percent change of the maximum carboxylation capacity of phosphoenolpyruvate carboxylase (PEPC) per unit area ($V_{pmax,A}$; a-c) and CO₂-saturated photosynthetic rate ($V_{max,A}$; d-f) at elevated O₃ in relation to leaf mass per area (LMA; a, d), and stomatal conductance per area ($g_{s,A}$; b, e) and per mass ($g_{s,M}$; c, f) across 22 genotypes in four species.

