Unique Contributions of Chlorophyll and Nitrogen to Predict Crop Photosynthetic Capacity from Leaf Spectroscopy

Objective
The positive relationship between crop yield and CO₂-saturated photosynthetic rate (V_{max}) makes maximizing V_{max} and its related traits, Chl and N_{mass} (chlorophyll and nitrogen), an important management and engineering target for bioenergy crops. Spectroscopic methods have great potential for high-throughput trait measurement, but it is unclear which methods among radiative transfer modeling (RTM), partial-least squares regression (PLSR), and generalized PLSR (gPLSR) perform best. To address this issue, researchers in this study evaluated spectra-based methods for estimating V_{max}, Chl, and N_{mass} and sought to understand the relationships among these traits.

Approach
- Conducted field and laboratory experiments to measure leaf spectra and traits in maize
- Comprehensively evaluated RTM, PLSR and gPLSR for estimating Chl, N_{mass}, and V_{max} from spectra
- Performed RTM and PLSR-based spectral contributions to analyze the linkage of Chl, N_{mass}, and V_{max}
- Compared leaf trait-based regression models to predict V_{max}

Results
- Leaf RTMs considering bidirectional effects gave accurate estimates of Chl, while gPLSR had an added value to predict N_{mass}.
- When field measurements were used for model training, PLSR achieved the best V_{max} prediction.
- Chl and N_{mass} made complementary contributions to the prediction of V_{max} and their combined use significantly improved V_{max} prediction over the use of either one individually.

Significance
Results of this study may be used to improve V_{max} prediction by incorporating both Chl and N_{mass} data across leaf and canopy scales. This strategy can be applied to other bioenergy crops and could improve crop yield and carbon cycling predictions in ecosystem-scale models of bioenergy cropping systems.